File Security System for COVID-19 Test Results
Using Steganography and Digital Signature

Vincent Budianto - 13517137
Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13517137@std.stei.ith.ac.id

Abstract—In early 2020, the world was caught off guard by the
outbreak of unknown pneumonia that began in Wuhan, Hubei
Province. It spread rapidly throughout more than 190 countries
and territories. This outbreak is named coronavirus disease 2019
(COVID-19), caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2). Entering holiday seasons, many
cities in Indonesia require visitors to have COVID-19 test result
file to enter the city. However, at this time the file does not have a
sufficient level of security therefore it can be misused by
irresponsible parties. To overcome this lack of security, digital
signature techniques and steganography can be applied to the
COVID-19 test result file. This paper will explain the use of the
steganography using Bit-Plane Complexity Segmentation
Steganography (BPCS-steganography) and digital signature using
Elliptic Curve Digital Signature Algorithm (ECDSA) to secure the
COVID-19 test result file.

Keywords—BPCS, Cryptography, Digital signature, ECDSA,
Health, Steganography.

1. INTRODUCTION

Communication has become a part of human life. Especially
in the information age like now, communication is very
crucial. There are times when the information is important and
confidential. Therefore, the communication method used must
be made in such a way that no other party knows about the
information.

For this reason, cryptography was born, namely a method of
processing information with a certain algorithm so that it
becomes cryptic and its meaning is difficult to understand.
However, this method often raises the suspicion of third
parties, because messages that are difficult to understand must
have been processed and show that the message is important
information.

To avoid this problem, steganography was born, which is a
method of hiding information in a medium, which can be in the
form of image, sound or video media. The most important
aspect of steganography is the level of security with which the
information is hidden, which refers to the extent to which third
parties are unable to detect the presence of hidden information.

Steganography is commonly used for hiding information on
image media, where text information is inserted into image
pixel bits. However, the frequently used methods are still
simple enough that third parties can still find hidden
information.

Makalah [F4020 Kriptografi — Sem. I Tahun 2020/2021

Therefore this paper discusses an implementation that makes
text steganography on image media stronger and safer. This
implementation signed a message with a digital signature using
the Elliptic Curve Digital Signature Algorithm (ECDSA). The
digital signed message is then entered into the image using
Bit-Plane Complexity Segmentation ~ Steganography
(BPCS-steganography) algorithm.

II. THEORY
A. COVID-19

COVID-19 is a contagious disease caused by severe acute
respiratory syndrome with the first case identified in Wuhan,
China, in December 2019. It has since spread worldwide,
leading to an ongoing pandemic.

Symptoms of COVID-19 are variable, but often include
fever, cough, fatigue, breathing difficulties, and loss of smell
and taste. Symptoms begin one to fourteen days after exposure
to the virus. Around one in five infected individuals do not
develop any symptoms. While most people have mild
symptoms, some people develop acute respiratory distress
syndrome. Acute respiratory distress syndrome (ARDS) can be
precipitated by cytokine storms, multi-organ failure, septic
shock, and blood clots. Longer-term damage to organs has
been observed. There is concern about a significant number of
patients who have recovered from the acute phase of the
disease but continue to experience a range of effects—known
as long COVID—for months afterwards. These effects include
severe fatigue, memory loss and other cognitive issues,
low-grade fever, muscle weakness, and breathlessness.

The virus that causes COVID-19 spreads mainly when an
infected person is in close contact with another person. Small
droplets and aerosols containing the virus can spread from an
infected person's nose and mouth as they breathe, cough,
sneeze, sing, or speak. Other people are infected if the virus
gets into their mouth, nose or eyes. The virus may also spread
via contaminated surfaces, although this is not thought to be
the main route of transmission. but infection mainly happens
when people are near each other for long enough. It can spread
as early as two days before infected persons show symptoms,
and from individuals who never experience symptoms. People
remain infectious for up to ten days in moderate cases, and two
weeks in severe cases. Various testing methods have been

developed to diagnose the disease. The standard diagnosis
method is by real-time reverse transcription polymerase chain
reaction from a nasopharyngeal swab (SWAB test).

Preventive measures include physical or social distancing,
quarantining, ventilation of indoor spaces, covering coughs and
sneezes, hand washing, and keeping unwashed hands away
from the face. The use of face masks or coverings has been
recommended in public settings to minimise the risk of
transmissions. Several vaccines have been developed and
various countries have initiated mass vaccination campaigns.

Although work is underway to develop drugs that inhibit the
virus, the primary treatment is currently symptomatic.
Management involves the treatment of symptoms, supportive
care, isolation, and experimental measures.

B. Cryptography

Cryptography, or cryptology, is the practice and study of
techniques for secure communication in the presence of third
parties called adversaries. More generally, cryptography is
about constructing and analyzing protocols that prevent third
parties or the public from reading private messages; various
aspects in information security such as data confidentiality,
data integrity, authentication, and non-repudiation are central
to modern cryptography. Modern cryptography exists at the
intersection of the disciplines of mathematics, computer
science, electrical engineering, communication science, and
physics. Applications of cryptography include -electronic
commerce, chip-based payment cards, digital currencies,
computer passwords, and military communications.

Cryptography prior to the modern age was effectively
synonymous with encryption, converting information from a
readable state to unintelligible nonsense. The sender of an
encrypted message shares the decoding technique only with
intended recipients to preclude access from adversaries. The
cryptography literature often uses the names Alice for the
sender, Bob for the intended recipient, and Eve for the
adversary. Since the development of rotor cipher machines in
World War I and the advent of computers in World War II,
cryptography methods have become increasingly complex and
its applications more varied.

Modern cryptography is heavily based on mathematical
theory and computer science practice; cryptographic
algorithms are designed around computational hardness
assumptions, making such algorithms hard to break in actual
practice by any adversary. While it is theoretically possible to
break into a well-designed such system, it is infeasible in
actual practice to do so. Such schemes, if well designed, are
therefore termed "computationally secure"; theoretical
advances, e.g., improvements in integer factorization
algorithms, and faster computing technology require these
designs to be continually reevaluated, and if necessary,
adapted. There exist information-theoretically secure schemes
that cannot be broken even with unlimited computing power
— an example is the one-time pad —- but these schemes are
much more difficult to wuse in practice than the best
theoretically breakable but computationally secure schemes.

The growth of cryptographic technology has raised a number
of legal issues in the information age. Cryptography's potential

Makalah IF4020 Kriptografi — Sem. I Tahun 2020/2021

for use as a tool for espionage and sedition has led many
governments to classify it as a weapon and to limit or even
prohibit its use and export. Cryptography also plays a major
role in digital rights management and copyright infringement
disputes in regard to digital media.

Until modern times, cryptography referred almost
exclusively to encryption, which is the process of converting
ordinary information into unintelligible form . Examples of
asymmetric systems include RSA, and ECC Quality
symmetric algorithms include the commonly used AES which
replaced the older DES . Not very high quality symmetric
algorithms include the assorted children's language tangling
schemes such as Pig Latin or other cant, and indeed effectively
all cryptographic schemes, however seriously intended, from
any source prior to the invention of the one-time pad early in
the 20th century.

C. Steganography

Steganography is the practice of concealing a message
within another message or a physical object. In
computing/electronic contexts, a computer file, message,
image, or video is concealed within another file, message,
image, or video. The word steganography comes from Greek
steganographia, which combines the words steganos, meaning
"covered or concealed", and -graphia meaning "writing".

The first recorded use of the term was in 1499 by Johannes
Trithemius in his Steganographia, a treatise on cryptography
and steganography, disguised as a book on magic. Generally,
the hidden messages appear to be something else: images,
articles, shopping lists, or some other cover text. For example,
the hidden message may be in invisible ink between the visible
lines of a private letter. Some implementations of
steganography that lack a shared secret are forms of security
through obscurity, and key-dependent steganographic schemes
adhere to Kerckhoffs's principle.

The advantage of steganography over cryptography alone is
that the intended secret message does not attract attention to
itself as an object of scrutiny. Plainly visible encrypted
messages, no matter how unbreakable they are, arouse interest
and may in themselves be incriminating in countries in which
encryption is illegal.

Whereas cryptography is the practice of protecting the
contents of a message alone, steganography is concerned both
with concealing the fact that a secret message is being sent and
its contents.

Steganography includes the concealment of information
within computer files. In digital steganography, electronic
communications may include steganographic coding inside of
a transport layer, such as a document file, image file, program
or protocol. Media files are ideal for steganographic
transmission because of their large size. For example, a sender
might start with an innocuous image file and adjust the color of
every hundredth pixel to correspond to a letter in the alphabet.
The change is so subtle that someone who is not specifically
looking for it is unlikely to notice the change.

D. Bit-Plane Complexity Segmentation
Steganography

The Bit-Plane Complexity Segmentation Steganography
(BPCS-steganography) is a type of digital steganography.
Digital steganography can hide confidential data securely by
embedding them into some media data called "vessel data".
The vessel data is also referred to as "carrier, cover, or dummy
data". In BPCS-steganography, true color images are mostly
used for vessel data. The embedding operation in practice is to
replace the "complex areas" on the bit planes of the vessel
image with the confidential data. The most important aspect of
BPCS-steganography is that the embedding capacity is very
large. In comparison to simple image based steganography
which uses solely the least important bit of data, and thus can
only embed data equivalent to 1/8 of the total size,
BPCS-steganography uses multiple bit-planes, and so can
embed a much higher amount of data, though this is dependent
on the individual image. For a 'normal' image, roughly 50% of
the data might be replaceable with secret data before image
degradation becomes apparent.

BPCS-steganography makes use of the special features of
human visual systems which have special properties so that
visual patterns that are too complex cannot be considered
"informative forms". For example, on a very flat beach shore
every single square-foot area looks the same - it is just a sandy
area, no shape is observed. However, if you look carefully, two
same-looking areas are entirely different in their sand particle
shapes. BPCS-steganography makes use of this property. It
replaces complex areas on the bit-planes of the vessel image
with other complex data patterns . This replacing operation is
called "embedding". No one can see any difference between
the two vessel images of before and after the embedding
operation.

However BPCS-steganography has an issue when the data to
be embedded appears visually as simple information, if this
simple information replaces the complex information in the
original image it may create spurious 'real image information'.
In this case the data is conjugated with a binary image, in order
to create a reciprocal complex representation.

E. Digital Signature

A digital signature is a mathematical scheme for verifying
the authenticity of digital messages or documents. A valid
digital signature, where the prerequisites are satisfied, gives a
recipient a very strong reason to believe that the message was
created by a known sender, and that the message was not
altered in transit .

Digital signatures are a standard element of most
cryptographic protocol suites, and are commonly used for
software distribution, financial transactions, contract
management software, and in other cases where it is important
to detect forgery or tampering.

Digital signatures are often used to implement electronic
signatures, which includes any electronic data that carries the
intent of a signature, but not all electronic signatures use digital
signatures. In some countries, including Canada, South Africa,
the United States, Algeria, Turkey, India, Brazil, Indonesia,
Mexico, Saudi Arabia, Uruguay, Switzerland, Chile and the

Makalah IF4020 Kriptografi — Sem. I Tahun 2020/2021

countries of the European Union, electronic signatures have
legal significance.

Digital signatures employ asymmetric cryptography. In
many instances they provide a layer of validation and security
to messages sent through a non-secure channel: Properly
implemented, a digital signature gives the receiver reason to
believe the message was sent by the claimed sender. Digital
signatures are equivalent to traditional handwritten signatures
in many respects, but properly implemented digital signatures
are more difficult to forge than the handwritten type. Digital
signature schemes, in the sense wused here, are
cryptographically based, and must be implemented properly to
be effective. Digital signatures can also provide
non-repudiation, meaning that the signer cannot successfully
claim they did not sign a message, while also claiming their
private key remains secret. Further, some non-repudiation
schemes offer a timestamp for the digital signature, so that
even if the private key is exposed, the signature is valid.
Digitally signed messages may be anything representable as a
bitstring: examples include electronic mail, contracts, or a
message sent via some other cryptographic protocol.

A digital signature is an authentication mechanism that
enables the creator of the message to attach a code that acts as
a signature. Typically, a digital signature consists of three
algorithms;

1. A key generation algorithm that selects a private key
uniformly at random from a set of possible private
keys. The algorithm outputs the private key and a
corresponding public key.

2. A signing algorithm that, given a message and a
private key, produces a signature.

3. A signature verifying algorithm that, given the
message, public key and signature, either accepts or
rejects the message's claim to authenticity.

Two main properties are required. First, the authenticity of a
signature generated from a fixed message and fixed private key
can be verified by using the corresponding public key.
Secondly, it should be computationally infeasible to generate a
valid signature for a party without knowing that party's private
key.

The Elliptic Curve Digital Signature Algorithm (ECDSA),
proposed by Scott Vanstone in 1992 in response to the
National Institute of Standards and Technology (NIST) request
for public comments on their first proposal for Digital
Signature Standard (DSS), is one of many examples of a
signing algorithm.

F. Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm is a variant
of the Digital Signature Algorithm which uses Elliptic Curve
Cryptography.

As with Elliptic Curve Cryptography in general, the bit size
of the public key believed to be needed for ECDSA is about
twice the size of the security level, in bits. For example, at a
security level of 80 bits the size of an ECDSA private key
would be 160 bits, whereas the size of a DSA private key is at
least 1024 bits. On the other hand, the signature size is the
same for both DSA and ECDSA: approximately 4 t bits, where

t is the security level measured in bits, that is, about 320 bits
for a security level of 80 bits.

I11. IMPLEMENTATION

A. BPCS Algorithm
Here is an implementation of the BPCS algorithm in Python.

messageBPCS.py

import math
import numpy as np
import os

import random

Wc = np.array([[0,1,0,1,0,1,0,1],
[1,0,1,0,1,0,1,0],
[0,1,0,1,0,1,0,1],
[1,0,1,0,1,0,1,0],
[0,1,0,1,0,1,0,1],
[1,0,1,0,1,0,1,0],
[0,1,0,1,0,1,0,1],
[1,0,1,0,1,0,1,0ID)

class messageBPCS():

def __init__(self, filename = None, content = None, key = None,
threshold = 0.3, encrypted = False, randomized = False, block_size =
8):

self.filename = filename

self.content = content

self.key = key

self.threshold = threshold

self.encrypted = encrypted

self.randomized = randomized

self.block_size = block_size

self.bitplane = [I

if (self.filename != None):
self.filedata = len(self.filename)
else:
self.filedata = None

if (self.content != None):
self.data = len(self.content)
else:
self.data = None

if (self.key != None):
self.seed = sum(ord(k) for k in key)

self.header = None
self.header_bitplane =[]
self.content_bitplane =[]
self.conjugation_map =[]

def shuffle(self, bitplane):
random.seed(self.seed)
random.shuffle(bitplane)

return bitplane

def unshuffle(self, bitplane):
n = len(bitplane)
perm = [i foriin range(1, (n +1))]
shuffled_perm = self.shuffle(perm)
unshuffled = list(zip(bitplane, shuffled_perm))
unshuffled.sort(key = lambda x: x[1])

return [a for (a, b) in unshuffled]

def to_binary(self, message):
binary = [format(byte, '08b") for byte in message]

while((len(binary) % self.block_size) != 0):
binary.append('01010101)

return binary

def to_bitplane(self, binary):
block = np.array([list(bit) for bit in binary])
height, width = block.shape
bitplane =[]

for hin range(0, (height - self.block_size + 1), self.block_size):
for win range(0, (width - self.block_size + 1), self.block_size):
bitplane.append(block[h:(h + self.block_size), w:(w +
self.block_size)].astype(int))

return bitplane

def complexity(self, bitplane):
count=0

for h in range(self.block_size):
for w in range(self.block_size):
if (h 1= (self.block_size - 1)):
if(bitplane[h][w] != bitplane[h + 1][w]):
count +=1

if (w!= (self.block_size - 1)):
if(bitplane[h][w] != bitplane[h][w + 1]):
count += 1

return count / 112

def conjugate(self, plane):
return plane A Wc

def int_bitplane(self, x):
bitplane = [I

byte = format(x, '064b")

plane = np.array([list(byte[b:(b + self.block_size)]) for b in
range(0, len(byte), self.block_size)])

plane = self.conjugate(plane.astype(int))

bitplane.append(plane)

return bitplane

def get_int(self, bitplane):
bitplane = self.conjugate(bitplane)
binary = "join(["join(bit) for bit in bitplane.astype(str)])
result = int(binary, 2)

return result

def set_header(self):
header ="

if (self.encrypted):
header +='22|'
else:
header +="11|'

if (self.randomized):
header +='22|'
else:
header +="11|'

header += str(self.filedata) + |
header += str(self.data) +|'
header += self.filename

self.neader = header.encode('utf-8')
binary = self.to_binary(self.neader)
self.header_bitplane = self.to_bitplane(binary)

Makalah IF4020 Kriptografi — Sem. I Tahun 2020/2021

return self.header_bitplane

def get_header(self):
self.neader = self.get_byte(self.header_bitplane)
self.header = self.header.decode('utf-8', errors='ignore')

headers = self.header.split([")

if (int(headers[0]) == 22):
self.encrypted = True
elif (int(headers[0]) == 11):
self.encrypted = False

if (int(headers[1]) == 22):
self.randomized = True

elif (int(headers[1]) == 11):
self.randomized = False

self.filedata = int(headers[2])
self.data = int(headers[3])

return headers[4][:self.filedata]

def set_content(self):
content = self.to_binary(self.content)
self.content_bitplane = self.to_bitplane(content)

if (self.randomized):
foriin range(len(self.content_bitplane)):
binary =[]
old = self.get_byte(self.content_bitplane[i])
new = self.shuffle(old)

for z in range(0, len(new), self.block_size):
byte = new[z:(z + self.block_size)]
byte = [format(bit, '01b") for bit in byte]
binary.append("join(["join(bit) for bit in byte]))

self.content_bitplanel[i] =
np.asarray(self.to_bitplane(binary))[0]

def get_content(self):
if (self.randomized):
foriin range(len(self.content_bitplane)):
binary =[]
old = self.get_byte(self.content_bitplane[i])
new = self.unshuffle(old)

for zin range(0, len(new), self.block_size):
byte = new[z:(z + self.block_size)]
byte = [format(bit, '01b") for bit in byte]
binary.append("join(["join(bit) for bit in byte]))

self.content_bitplanel[i] = self.to_bitplane(binary)[0]
content = self.get_byte(self.content_bitplane)[:self.datal
elf:?):ntent = self.get_byte(self.content_bitplane)[:self.data]
return content
def conjugate_content(self):

=0
(0]

i

J

while (i < len(self.neader_bitplane)):

if (self.complexity(self.neader—_bitplanelil) < self.threshold):
self.header—_bitplaneli] =

self.conjugate(self.header_bitplane[i])
self.conjugation_map.append(i)

i+=1

while (j < len(self.content_bitplane)):
if (self.complexity(self.content_bitplane[j]) < self.threshold):

self.content_bitplanelj] =
self.conjugate(self.content_bitplane[j])
self.conjugation_map.append(i + j)

j+=1

def unconjugate_content(self, bitplane):
cmap =[]

foriin range(len(self.conjugation_map)):
self.conjugation_mapli] =
self.conjugate(self.conjugation_maplil)

for plane in self.conjugation_map:
cmap.append("join(["join(bit) for bit in plane.astype(str)]))

cmap ="join(cmap)
foriin range(len(bitplane)):
if (cmaplil =="1):
bitplanelil = self.conjugate(bitplanelil)

return bitplane

def conjugation_mapping(self):
conjugation_map = ['0' for i in range(len(self.bitplane))]

foriin self.conjugation_map:
conjugation_mapli] =T

while((len(conjugation_map) % self.block_size) != 0):
conjugation_map.append('0’)

binary = ["join(conjugation—_maplj:(j + self.block_size)]) for j in
range(0, len(conjugation_map), self.block_size)]

while((len(binary) % self.block_size) != 0):
binary.append('01010101)

self.conjugation_map = self.to_bitplane(binary)

for j in range(len(self.conjugation_map)):
self.conjugation_maplj] =
self.conjugate(self.conjugation_maplj])

return self.conjugation_map

def get_byte(self, bitplane):
result = bytearray()

for plane in bitplane:
for bit in plane:
byte = int("join(bit.astype(str)), 2)
result.append(byte)

return result

def set_message(self):
self.set_header()
self.set_content()

self.conjugate_content()

self.bitplane += self.int_bitplane(len(self.neader_bitplane))
self.bitplane += self.int_bitplane(len(self.content_bitplane))

self.bitplane += self.header_bitplane
self.bitplane += self.content_bitplane

conjugation_bitplane = self.conjugation_mapping()
self.bitplane += self.int_bitplane(len(conjugation_bitplane))
self.bitplane += conjugation_bitplane

return self.bitplane

def get_message(self, bitplane):

Makalah IF4020 Kriptografi — Sem. I Tahun 2020/2021

header_length = self.get_int(bitplane.pop(0))
content—_length = self.get_int(bitplane.pop(0))
temp=1]

foriin range(header_length + content_length):
temp.append(bitplane.pop(0))

cmap—_length = self.get_int(bitplane.pop(0))

for j in range(cmap—_length):
self.conjugation_map.append(bitplane.pop(0))

temp = self.unconjugate_content(temp)

for k in range(header—_length):
self.header_bitplane.append(temp.pop(0))

for I in range(content_length):
self.content_bitplane.append(temp.pop(0))

self.filename = self.get_header()
self.content = self.get_content()

return self.filename, self.content, self.encrypted

Algorithm 1. messageBPCS Implementation

imageBPCS.py

import cv2

import math

import numpy as np
import random

from messageBPCS import messageBPCS
from vigenere import Vigenere

class imageBPCS():
def __init—_(self):
self.block_size = 8

def readimage(self, filename):
try:
image = cv2.imread(filename)

self.image = image
self.height, self.width, self.channels = image.shape
self.size = self.width * self.height
self.map = list(range(self.size))
except Exception as exception:
print(exception)
print("Error while reading image file")

def writelImage(self, filename):
cv2.imwrite(filename, self.image)

def complexity(self, block):
count=0
height, width = block.shape

for hin range(height - 1):
for win range(width - 1):
if (block[h]l[w] != block[h + 1][w]):
count +=1

if (block[h][w] != block[h][w +1]):
count +=1

return count / 112

def to_bitplane(self, block):
result =[]

foriin reversed(range(8)):
bit = (block / (2 ** i)).astype(int) % 2
result.append(bit)

return result

def to_byte(self, bit, plane):

if (plane == 0):
result = bit[plane]
else:

result = 2 * self.to_byte(bit, (plane - 1)) + bit[plane]
return result

def from_bitplane(self, bitplane):
return self.to_byte(bitplane, (len(bitplane) - 1))

def embed(self, path, key, threshold, encrypted, randomized):
if (encrypted):
vig = Vigenere(key)
content = vig.encryptFile(path)
else:
content = open(path, "rb").read()

filename = path.split(/")[-1]

msg = messageBPCS(filename = filename, content = content,
key = key, threshold = threshold, encrypted = encrypted, randomized
= randomized, block_size = self.block_size)

message = msg.set_message()

if ((self.width * self.height * self.channels) < len(message)):
raise Exception(lmage is smaller than payload')

i=0

while (i < len(message)):
h=0

while ((h < (self.height - self.block_size + 1)) and (i <
len(message))):
w=0

while ((w < (self.width - self.block_size + 1)) and (i <
len(message))):

block = self.image[h:(h + self.block_size), w:(w +
self.block_size)]

blocks = cv2.split(block)

bitplane = [self.to_bitplane(block) for block in blocks]
j=0

while ((j < len(bitplane)) and (i < len(message))):
k=0

while ((k < len(bitplane[j])) and (i < len(message))):
if (self.complexity(bitplane[jI[k]) >= threshold):
bitplanel[jl[k] = messagelil
i+=1

k+=1
j+=1

channel = [self.from_bitplane(plane) for plane in
bitplane]

new_blocks = cv2.merge(channel)

self.imagelh:(h + self.block_size), w:(w + self.block_size)]
= new_blocks

w += self.block_size

h += self.block_size
return self.image
def extract(self, key, threshold):

msg = messageBPCS(key = key, threshold = threshold,
block_size = self.block_size)

Makalah IF4020 Kriptografi — Sem. I Tahun 2020/2021

message = []
h=0

while (h < (self.height - self.block_size + 1)):
w=0

while (w < (self.width - self.block_size +1)):
block = self.image[h:(h + self.block_size), w:(w +
self.block_size)]
blocks = cv2.split(block)
bitplane = [self.to_bitplane(block) for block in blocks]
j=0

while (j < len(bitplane)):
k=0

while (k < len(bitplane[j])):
if (self.complexity(bitplane[jI[k]) >= threshold):
message.append(bitplane[jI[k])
k+=1
j+=1
w += self.block_size
h += self.block_size

filename, content, encrypted = msg.get_message(message)

with open(result/image/' + filename, "wb") as f:
f.write(content)

if (encrypted):
vig = Vigenere(key)
vig.decryptFile(result/image/' + filename,
(‘result/image/decrypted_' + filename))

return filename, content
@staticmethod
def psnr(image_one, image_two):

mse = np.mean((image—_one - image_two) ** 2)

if (mse == 0):
return 100

max—pixel = 256.0
psnr = 20 * math.log10(max—_pixel / math.sqrt(mse))

return psnr

Algorithm 2. imageBPCS Implementation

B. ECDSA Algorithm

Here is an implementation of the ECDSA algorithm in
Javascript.

ECDSA,js

/* All elements of array must be in value 0-255 */
/)\'*

* Requirements:

* ECMAScript 2015

i

let string = require(./util/string")
let utils = require(’./util/utils")
let keccak = require('./Keccak’)
let ec = require('/EllipticCurve’)

const byteReduction = On
const binReduction =1n

module.exports = {
ECDSA: class {
/**

* @param {BigInt} a

* @param {Bigint} b

* @param {BigInt} p

* @param {Array} basePointNum
* @param {BigInt} n

*/

constructor(a, b, p, basePointNum, n) {
// DEFAULT NIST-192
if (a === undefined || b === undefined || p === undefined) {
letp =
BigInt(62771017353866807638357894232076664160839087003903
24961279n)
letn =
BigInt(6277101735386680763835789423176059013767194773182842
284081n)
let a = BigInt(-3n)
letb =
BigInt(0x64210519e59c¢80e70fa7e9ab72243049feb8deecc146b9b1)
letg =
[Biglnt(OX'I88da80eb03090f67cbf20eb43818800f4fanfd82ff10‘|2),

Biglnt(OXO7192b95ff08da78631011ed6b24cdd573f977a1le794811)]
this.curve = new ec.EllipticCurve(a, b, p, g)
this.curve.setOrderExplicit(n)

}
// BASE POINT NUM EXPLICIT
else if (isNaN(basePointNum)) {
this.curve = new ec.EllipticCurve(a, b, p, basePointNum)
if (n === undefined) {
this.curve.setOrder();
}else {
this.curve.setOrderExplicit(n)
}
}
// ONLY A, B, P, and NUMBER G
else {
this.curve = new ec.EllipticCurve(a, b, p)
this.curve.setBasePointNumber(basePointNum)
}
}

setKeyRandom() {

let binCount = this.curve.binSize - binReduction

this.privateKey = utils.getRandomintRange(binCount, 2n **
binCount + 2n, (this.curve.n - 2n))
this.privateKeyHex = this.privateKey.toString(16)
this.publicKey =
this.curve.multiplyGraphPoint(this.curve.base, this.privateKey)
this.publicKeyHex = this.publicKey[0].toString(16) + "' +
this.publicKey[1].toString(16)

}

/~k~k
* @param {BigInt} privateKey
*/
setPrivateKey(privateKey) {
this.privateKey = privateKey
this.privateKeyHex = this.privateKey.toString(16)
)

/**
*

@param {Array} publicKey
/
setPublicKey(publicKey) {
this.publicKey = publicKey
this.publicKeyHex = this.publicKey[0].toString(16) + "' +
this.publicKey[1].toString(16)
}

*
*

Makalah IF4020 Kriptografi — Sem. I Tahun 2020/2021

/**

* @param {String} privateKeyHex

*/

setPrivatekeyHex(privateKeyHex) {
this.privateKeyHex = privateKeyHex
this.privateKey = BigInt('0x' + privateKeyHex)

}
/*k

* @param {String} publicKeyHex
*/
setPublicKeyHex(publicKeyHex) {

this.publicKeyHex = publicKeyHex

let splittedPublic = publicKeyHex.split("")

this.publicKey = [BigInt('0Ox' + splittedPublic[0]), BigInt('0Ox' +
splittedPublic[1])]

}

setKeyHex(privateKeyHex) {
this.privateKeyHex = privateKeyHex
this.privateKey = BigInt('0Ox' + privateKeyHex)
this.publicKey =
this.curve.multiplyGraphPoint(this.curve.base, this.privateKey)
this.publicKeyHex = this.publicKey[0].toString(16) + "' +
this.publicKey[1].toString(16)
}

initiateK(privateKey) {

let binCount = this.curve.binSize - binReduction

let k = utils.getRandomIntRange(binCount, 2n ** binCount,
privateKey)

while (k >= privateKey) {
k = utils.getRandomIntRange(binCount, 2n ** binCount,
privateKey)
)

let qa = this.curve.multiplyGraphPoint(this.curve.base, k)
return [k, qal

validatePublicKey(publicKey) {
if (publicKey[0] === -1 & & publicKey[1] === -1) {
return false;
}

let mulPub = this.curve.multiplyGraphPoint(publicKey,
this.curve.N)

if (mulPub[0] === -1 & & mulPubl1] === -1) {
return false;
}

return true;

}

sign(message, privateKey, hexedKey = false, hexedOutput =

false) {
lets =0n
letr=0n

if (hexedKey) {
privateKey = BigInt('0Ox' + privateKey)
)

while (s === 0n) {
let initiate = this.initiateK(privateKey)
let k = initiate[0]
let qa = initiate[1]

r = utils.mod(qal0], this.curve.n)

while (r === 0n) {
initiate = this.initiateK()

k = initiate[O]
qa = initiate[1]
r = utils.mod(qal0], this.curve.n)

}

let invK = utils.modlnverse(k, this.curve.n)

if (lisNaN(Number(invK))) {

let hashed = keccak.hash(message,
Number(this.curve.binSize / 8n))
let e = BigInt(utils.strToHex(hashed))
let sumEDR = utils.mod(e + privateKey * r, this.curve.n)
s = utils.mod((invK * sumEDR), this.curve.n)

if (isNaN(Number(utils.modInverse(s, this.curve.n)))) {
s=0n
}
}
}

if (lhexedOutput) {
return [r, s]
}else{
return (r.toString(16) + ' + s.toString(16))
}
}

verify(message, signature, publicKey, hexedKey = false,
hexedSign = false) {

letr=0

lets=0

if (hexedKey) {
let splitted = publicKey.split("")
publicKey = [BigInt('Ox' + splitted[0]), BigInt('Ox' +
splitted[1])]
}

if (lhexedsSign) {
r = signature([0]
s = signature[1]
}else {
let splitted = signature.split("|")
r = BigInt('0x' + splitted[0])
s = BigInt('0x' + splitted[1])
)

if (r >= this.curve.n || r<= 0| s >= this.curve.n || s <= 0) {
return false

)

let hashed = keccak.hash(message,
Number(this.curve.binSize / 8n))

let e = BigInt(utils.strToHex(hashed))

let w = utils.modinverse(s, this.curve.n)

let u1 = utils.mod((e * w), this.curve.n)

let u2 = utils.mod((r * w), this.curve.n)

let ulg = this.curve.multiplyGraphPoint(this.curve.base, u1)

let u2q = this.curve.multiplyGraphPoint(publicKey, u2)

let x = this.curve.sumGraphPoint(ulg, u2q)

if (x[0] ===-1]] x[1] ===-1) {
return false

)

let x1 = x[0]
let v = utils.mod(x1, this.curve.n)

return (v ===r)

Makalah IF4020 Kriptografi — Sem. I Tahun 2020/2021

Algorithm 3. ECDSA Implementation

IVv. PropPoSED FILE SECURITY SYSTEM

First of all, the COVID-19 test result file will be digitally
signed using the ECDSA algorithm using the public and
private keys of the party or institution that issued the file. After
being signed, the COVID-19 test result file is inserted into the
logo image of the institution that issued the file with a
stego-key known only to the authorities.

d2144a6e3ef71aleSfef25¢51696c07ddald6f641
balef34
2197b5e2bb8eeelealebc122417612ffc9b2f957a
ab4a3c9
bb14232ecaa0020bc899¢ee8eecde85b44bf0a%e3bb
1da781a

Table 1. ECDSA Public-Private Key Example

Private key

Public key

When the examiner wants to check the file, the examiner
will extract the file from the image using a stego key and then
verify it using the public key of the institution that issued the
file.

V. CONCLUSION

The use of steganography and digital signatures on the covid
test result files has advantages in the security aspect, but along
with that there are challenges in implementation and
supporting elements to ensure that this file security system can
work properly.

VI. ACKNOWLEDGMENT

First of all, the authors express gratitude and gratitude to
God Almighty for His love and blessings so that the author can
still take lessons in Informatics Engineering, Bandung Institute
of Technology.

The author would also like to thank both parents and
families who always pray for and support what the author is
doing. The author also wants to thank Mr. Rinaldi Munir as a
lecturer in the Cryptography course who helped the author
understand the material presented and the preparation of this
paper.

Finally, the author would also like to say many thanks to
friends, especially from the Jiwa-Jiwa Yang Tersiksa group
who always support and encourage the author in his studies at
Bandung Institute of Technology, including in the preparation
of this paper.

REFERENCES

[1] Johnson, Don, Alfred Menezes, and Scott Vanstone. The Elliptic Curve
Digital Signature Algorithm (ECDSA).

https://www.cs.miami.edu/home/burt/learning/Csc609.142/ecdsa-cert.pdf
(diakses tanggal 20 Desember 2020)

[2] Limbong, Sepriani T. 2020. Virus Corona (COVID-19).
https://www klikdokter.com/penyakit/coronavirus (diakses tanggal 20
Desember 2020)

[3] Munir, Rinaldi. 2020. Bitplane Complexity Segmentation (BPCS).
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/BP

CS-2020.pdf (diakses tanggal 20 Desember 2020)

Makalah IF4020 Kriptografi — Sem. I Tahun 2020/2021

[4] Munir, Rinaldi. 2020. Digital Signature Standard (DSS).
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/DS
S-2020.pdf (diakses tanggal 20 Desember 2020)

[5] Munir, Rinaldi. 2020. Steganografi (Bagian 1).
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-202 1/Ste
ganografi-Bagian1-2020.pdf (diakses tanggal 20 Desember 2020)

[6] Munir, Rinaldi. 2020. Steganografi (Bagian 2).

http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Ste

ganografi-Bagian2-2020.pdf (diakses tanggal 20 Desember 2020)

[7] Munir, Rinaldi. 2020. Steganografi (Bagian 3).
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-202 1/Ste
ganografi-Bagian3-2020.pdf (diakses tanggal 20 Desember 2020)

[8] Munir, Rinaldi. 2020. Tanda-tangan digital (digital signature).
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Tan
da-tangan-digital-2020.pdf (diakses tanggal 20 Desember 2020)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 21 December 2020

e

Vincent Budianto 13517137

https://www.cs.miami.edu/home/burt/learning/Csc609.142/ecdsa-cert.pdf
https://www.klikdokter.com/penyakit/coronavirus
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/BPCS-2020.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/BPCS-2020.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/DSS-2020.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/DSS-2020.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Steganografi-Bagian1-2020.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Steganografi-Bagian1-2020.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Steganografi-Bagian2-2020.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Steganografi-Bagian2-2020.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Steganografi-Bagian3-2020.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Steganografi-Bagian3-2020.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Tanda-tangan-digital-2020.pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Tanda-tangan-digital-2020.pdf

